当今智能城市中产生的大型视频数据从其有目的的用法角度引起了人们的关注,其中监视摄像机等是最突出的资源,是为大量数据做出贡献的最突出的资源,使其自动化分析成为计算方面的艰巨任务。和精确。暴力检测(VD)在行动和活动识别域中广泛崩溃,用于分析大型视频数据,以了解由于人类而引起的异常动作。传统上,VD文献基于手动设计的功能,尽管开发了基于深度学习的独立模型的进步用于实时VD分析。本文重点介绍了深度序列学习方法以及检测到的暴力的本地化策略。该概述还介入了基于机器学习的初始图像处理和基于机器学习的文献及其可能具有的优势,例如针对当前复杂模型的效率。此外,讨论了数据集,以提供当前模型的分析,并用对先前方法的深入分析得出的VD域中的未来方向解释了他们的利弊。
translated by 谷歌翻译
语言是人类交流的主要工具,其中幽默是最有吸引力的部分之一。使用计算机,又称自然语言生成(NLG)的人类产生自然语言,已广泛用于对话系统,聊天机器人,机器翻译以及计算机AID创建,例如Idea Generations,剧本。但是,自然语言的幽默方面相对不足,尤其是在预训练的语言模型时代。在这项工作中,我们旨在初步测试NLG是否可以像人类一样产生幽默。我们构建了一个新的数据集,该数据集由众多数字化的中国可笑的串扰脚本(称为c $^3 $简称),该脚本适用于1800年代以来名为“ Xiangsheng”的流行中国表演艺术。 (为了方便非中国扬声器,我们在本文中称为“ Xiangsheng”的“ Crosstalk”。)我们基准了各种一代方法,包括训练seq2seq,微调中级PLMS和大型PLMS(大型PLMS)(有无微调)。此外,我们还进行了人类评估,表明1)大规模预处理在很大程度上提高了串扰的产生质量; 2)即使是从最佳PLM产生的脚本也远非我们的期望,只有65%的人类创建的串扰质量。我们得出结论,使用大型PLM可以在很大程度上改善幽默的产生,但仍处于起步阶段。 \ url {https://github.com/anonno2/crosstalk-generation}公开可用数据和基准代码。
translated by 谷歌翻译
Advances in reinforcement learning have led to its successful application in complex tasks with continuous state and action spaces. Despite these advances in practice, most theoretical work pertains to finite state and action spaces. We propose building a theoretical understanding of continuous state and action spaces by employing a geometric lens. Central to our work is the idea that the transition dynamics induce a low dimensional manifold of reachable states embedded in the high-dimensional nominal state space. We prove that, under certain conditions, the dimensionality of this manifold is at most the dimensionality of the action space plus one. This is the first result of its kind, linking the geometry of the state space to the dimensionality of the action space. We empirically corroborate this upper bound for four MuJoCo environments. We further demonstrate the applicability of our result by learning a policy in this low dimensional representation. To do so we introduce an algorithm that learns a mapping to a low dimensional representation, as a narrow hidden layer of a deep neural network, in tandem with the policy using DDPG. Our experiments show that a policy learnt this way perform on par or better for four MuJoCo control suite tasks.
translated by 谷歌翻译
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
translated by 谷歌翻译
Maximum Inner Product Search (MIPS) is a popular problem in the machine learning literature due to its applicability in a wide array of applications, such as recommender systems. In high-dimensional settings, however, MIPS queries can become computationally expensive as most existing solutions do not scale well with data dimensionality. In this work, we present a state-of-the-art algorithm for the MIPS problem in high dimensions, dubbed BanditMIPS. BanditMIPS is a randomized algorithm that borrows techniques from multi-armed bandits to reduce the MIPS problem to a best-arm identification problem. BanditMIPS reduces the complexity of state-of-the-art algorithms from $O(\sqrt{d})$ to $O(\text{log}d)$, where $d$ is the dimension of the problem data vectors. On high-dimensional real-world datasets, BanditMIPS runs approximately 12 times faster than existing approaches and returns the same solution. BanditMIPS requires no preprocessing of the data and includes a hyperparameter that practitioners may use to trade off accuracy and runtime. We also propose a variant of our algorithm, named BanditMIPS-$\alpha$, which employs non-uniform sampling across the data dimensions to provide further speedups.
translated by 谷歌翻译
Random forests are some of the most widely used machine learning models today, especially in domains that necessitate interpretability. We present an algorithm that accelerates the training of random forests and other popular tree-based learning methods. At the core of our algorithm is a novel node-splitting subroutine, dubbed MABSplit, used to efficiently find split points when constructing decision trees. Our algorithm borrows techniques from the multi-armed bandit literature to judiciously determine how to allocate samples and computational power across candidate split points. We provide theoretical guarantees that MABSplit improves the sample complexity of each node split from linear to logarithmic in the number of data points. In some settings, MABSplit leads to 100x faster training (an 99% reduction in training time) without any decrease in generalization performance. We demonstrate similar speedups when MABSplit is used across a variety of forest-based variants, such as Extremely Random Forests and Random Patches. We also show our algorithm can be used in both classification and regression tasks. Finally, we show that MABSplit outperforms existing methods in generalization performance and feature importance calculations under a fixed computational budget. All of our experimental results are reproducible via a one-line script at https://github.com/ThrunGroup/FastForest.
translated by 谷歌翻译
Concept bottleneck models (CBMs) (Koh et al. 2020) are interpretable neural networks that first predict labels for human-interpretable concepts relevant to the prediction task, and then predict the final label based on the concept label predictions.We extend CBMs to interactive prediction settings where the model can query a human collaborator for the label to some concepts. We develop an interaction policy that, at prediction time, chooses which concepts to request a label for so as to maximally improve the final prediction. We demonstrate thata simple policy combining concept prediction uncertainty and influence of the concept on the final prediction achieves strong performance and outperforms a static approach proposed in Koh et al. (2020) as well as active feature acquisition methods proposed in the literature. We show that the interactiveCBM can achieve accuracy gains of 5-10% with only 5 interactions over competitive baselines on the Caltech-UCSDBirds, CheXpert and OAI datasets.
translated by 谷歌翻译
Changes in real-world dynamic processes are often described in terms of differences in energies $\textbf{E}(\underline{\alpha})$ of a set of spectral-bands $\underline{\alpha}$. Given continuous spectra of two classes $A$ and $B$, or in general, two stochastic processes $S^{(A)}(f)$ and $S^{(B)}(f)$, $f \in \mathbb{R}^+$, we address the ubiquitous problem of identifying a subset of intervals of $f$ called spectral-bands $\underline{\alpha} \subset \mathbb{R}^+$ such that the energies $\textbf{E}(\underline{\alpha})$ of these bands can optimally discriminate between the two classes. We introduce EGO-MDA, an unsupervised method to identify optimal spectral-bands $\underline{\alpha}^*$ for given samples of spectra from two classes. EGO-MDA employs a statistical approach that iteratively minimizes an adjusted multinomial log-likelihood (deviance) criterion $\mathcal{D}(\underline{\alpha},\mathcal{M})$. Here, Mixture Discriminant Analysis (MDA) aims to derive MLE of two GMM distribution parameters, i.e., $\mathcal{M}^* = \underset{\mathcal{M}}{\rm argmin}~\mathcal{D}(\underline{\alpha}, \mathcal{M})$ and identify a classifier that optimally discriminates between two classes for a given spectral representation. The Efficient Global Optimization (EGO) finds the spectral-bands $\underline{\alpha}^* = \underset{\underline{\alpha}}{\rm argmin}~\mathcal{D}(\underline{\alpha},\mathcal{M})$ for given GMM parameters $\mathcal{M}$. For pathological cases of low separation between mixtures and model misspecification, we discuss the effect of the sample size and the number of iterations on the estimates of parameters $\mathcal{M}$ and therefore the classifier performance. A case study on a synthetic data set is provided. In an engineering application of optimal spectral-banding for anomaly tracking, EGO-MDA achieved at least 70% improvement in the median deviance relative to other methods tested.
translated by 谷歌翻译
Human activity recognition (HAR) using drone-mounted cameras has attracted considerable interest from the computer vision research community in recent years. A robust and efficient HAR system has a pivotal role in fields like video surveillance, crowd behavior analysis, sports analysis, and human-computer interaction. What makes it challenging are the complex poses, understanding different viewpoints, and the environmental scenarios where the action is taking place. To address such complexities, in this paper, we propose a novel Sparse Weighted Temporal Attention (SWTA) module to utilize sparsely sampled video frames for obtaining global weighted temporal attention. The proposed SWTA is comprised of two parts. First, temporal segment network that sparsely samples a given set of frames. Second, weighted temporal attention, which incorporates a fusion of attention maps derived from optical flow, with raw RGB images. This is followed by a basenet network, which comprises a convolutional neural network (CNN) module along with fully connected layers that provide us with activity recognition. The SWTA network can be used as a plug-in module to the existing deep CNN architectures, for optimizing them to learn temporal information by eliminating the need for a separate temporal stream. It has been evaluated on three publicly available benchmark datasets, namely Okutama, MOD20, and Drone-Action. The proposed model has received an accuracy of 72.76%, 92.56%, and 78.86% on the respective datasets thereby surpassing the previous state-of-the-art performances by a margin of 25.26%, 18.56%, and 2.94%, respectively.
translated by 谷歌翻译
Drone-camera based human activity recognition (HAR) has received significant attention from the computer vision research community in the past few years. A robust and efficient HAR system has a pivotal role in fields like video surveillance, crowd behavior analysis, sports analysis, and human-computer interaction. What makes it challenging are the complex poses, understanding different viewpoints, and the environmental scenarios where the action is taking place. To address such complexities, in this paper, we propose a novel Sparse Weighted Temporal Fusion (SWTF) module to utilize sparsely sampled video frames for obtaining global weighted temporal fusion outcome. The proposed SWTF is divided into two components. First, a temporal segment network that sparsely samples a given set of frames. Second, weighted temporal fusion, that incorporates a fusion of feature maps derived from optical flow, with raw RGB images. This is followed by base-network, which comprises a convolutional neural network module along with fully connected layers that provide us with activity recognition. The SWTF network can be used as a plug-in module to the existing deep CNN architectures, for optimizing them to learn temporal information by eliminating the need for a separate temporal stream. It has been evaluated on three publicly available benchmark datasets, namely Okutama, MOD20, and Drone-Action. The proposed model has received an accuracy of 72.76%, 92.56%, and 78.86% on the respective datasets thereby surpassing the previous state-of-the-art performances by a significant margin.
translated by 谷歌翻译